Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites.

نویسندگان

  • J Cheng
  • T Huang
  • Y F Zheng
چکیده

In this study, the effects of Fe2O3 (addition, 2, 5, 10, and 50 wt %) on the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Fe-Fe2O3 composites fabricated by spark plasma sintering were systematically investigated as a novel-structure biodegradable metallic material. The results of X-ray diffraction analysis and optical microscopy indicated that Fe-Fe2O3 composite is composed of α-Fe and FeO instead of Fe2O3. Both eletrochemical measurements and immersion test showed a faster degradation rate of Fe-2Fe2O3 and Fe-5Fe2O3 composites than pure iron and Fe-5Fe2O3 exhibited the fastest corrosion rate among these composites. Besides, the effect of Fe2O3 on the corrosion behavior of Fe-Fe2O3 composites was discussed. The extracts of Fe-Fe2O3 composite exhibited no cytotoxicity to both ECV304 and L929 cells, whereas greatly reduced cell viabilities of vascular smooth muscle cells. In addition, good hemocompatibility of all Fe-Fe2O3 composites and pure iron was obtained. To sum up, Fe-5Fe2O3 composite is a promising alternative for biodegradable stent material with elevated corrosion rate, enhanced mechanical properties, as well as excellent biocompatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application

Pure iron has been demonstrated as a potential candidate for biodegradable metal stents due to its appropriate biocompatibility, suitable mechanical properties and uniform biodegradation behavior. The competing parameters that control the safety and the performance of BMS include proper strength-ductility combination, biocompatibility along with matching rate of corrosion with healing rate of a...

متن کامل

Mechanical Properties and In Vitro Degradation of Sputtered Biodegradable Fe-Au Foils

Iron-based materials proved being a viable candidate material for biodegradable implants. Magnetron sputtering combined with UV-lithography offers the possibility to fabricate structured, freestanding foils of iron-based alloys and even composites with non-solvable elements. In order to accelerate the degradation speed and enhance the mechanical properties, the technique was used to fabricate F...

متن کامل

Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further...

متن کامل

Bulk TiB2-Based Ceramic Composites with Improved Mechanical Property Using Fe–Ni–Ti–Al as a Sintering Aid

The densification behavior, microstructure and mechanical properties of bulk TiB₂-based ceramic composites, fabricated using the spark plasma sintering (SPS) technique with elements of (Fe-Ni-Ti-Al) sinter-aid were investigated. Comparing the change of shrinkage displacement of pure TiB₂ and TiB₂-5 wt% (Fe-Ni-Ti-Al), the addition of elements Fe-Ni-Ti-Al into TiB₂ can facilitate sintering of the...

متن کامل

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 102 7  شماره 

صفحات  -

تاریخ انتشار 2014